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Abstract 
 
The hybridisation of a fifth-generation mesoscale model (MM5) comprising four 
statistical models—multiple linear regression (MLR), nonlinear regression (NLR), 
artificial neural network (ANN) and support vector machine (SVM)—facilitates the 
improvement in accuracy of downscaling weather variables derived from ECMWF 
ERA40-reanalysis data.  This study will explore the best combination of variable 
selection by using forward-based selection. All the analysis is based on hourly time 
interval data.  This paper explores in detail the regression models and the hybrid 
approach which uses the outputs from MM5 for improvements in statistical modelling. 
This study is also a first-time attempt to decide the best combination of weather 
variables for improvements in dynamical downscaling output. Through this study, new 
corrected values for each weather variable can be developed based on the best model to 
produce the corrected values of weather variables in the testing phase for hydrological 
modelling purposes. 
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1. Introduction 
 
It is indubitable that hydrological/weather modelling accuracy relies significantly on 
accurate hydro-meteorological data (Chowdhury and Ward, 2004; Coulibaly, 2003; 
Werner et al., 2005). The main input parameters of many hydrological models are 
evapotranspiration and rainfall (Ishak et al., 2010). However, accurate estimation of the 
above parameters also depends on the wind speed, surface temperature, relative 
humidity, and solar radiation. Hence, these other weather parameters are important in 
the hydrological cycle, particularly for hydrological modelling and forecasting (Chahine, 
1992; Fowler et al., 2007; Heuvelmans et al., 2006).  
 
The most common use of weather parameters is the estimation of reference 
evapotranspiration (ETo) (Meza, 2005). As a weather parameter, ETo can be computed 
from weather data (Xu et al., 2006).  Since water is abundantly available at reference 
evapotranspiration surfaces and soil factors do not affect ETo (Allen et al., 1998),  
estimation is derived mainly by calculating the wind speed, surface temperature, 
relative humidity, solar radiation and surface pressure (Allen et al., 1998; Sentelhas et 
al., 2010).  The Penman-Monteith equation has been proven as the best for estimating 
ETo and has been published in the FAO-56 report (Allen et al., 1998).  
 
Another approach to reference ETo estimation is through downscaled weather variables 
from numerical weather prediction models (Ishak et al., 2010). However, downscaled 
weather variables tend to be erroneous and thus unreliable for ETo estimation. For 
instance, Ishak showed that the error in the essential weather parameter of wind speed 
for ETo estimation was about 200-400% through mesoscale model (MM5) downscaling. 
Other input parameters showing errors were very high air temperature (<10%), relative 
humidity (5–21%) and net radiation (4–23%). The only exception was for atmospheric 
pressure, which was accurately derived with less than 0.2% error. Thus, with the 
exception of atmospheric pressure, the other four weather variables must be improved 
before estimating evapotranspiration using MM5 downscaling with reliable accuracy 
(Ishak et al., 2010, 2011). 
 
This paper demonstrates the improvement of three weather variables (surface 
temperature, relative humidity and solar radiation) and rainfall by using four types of 
empirical mathematical models. These mathematical models—multiple linear 
regression, nonlinear regression, artificial neural network and support vector 
machine—are proven tools for improving weather variables (Ghosh and Mujumdar, 
2008; Heuvelmans et al., 2006). They have been successfully used in many hydrological 
problems involving river level forecasting, rainfall-runoff modelling, rainfall forecasting, 
ground water modelling, water quality prediction, and water resources management 
and operation (Ghosh and Mujumdar, 2008; Khalil et al., 2005; Oommen et al., 2007; 
Tripathi et al., 2006; Yoon et al., 2010; Young, 2002). 
 
In this paper, the development of a hybrid system using mathematical models for the 
improvement of key hydrological and weather variables is explored. The paper is 
structured as follows: the description of the study area and observed data is provided in 
Section 2. Section 3 summarises the MM5 modelling and downscaling set-up. In Section 
4, the four empirical mathematical models are applied to error correction of the four 
weather variables. The selection of input variables to the empirical models is illustrated 
in Section 5, while the error correction results using the models are elaborated in 
Section 6. The paper ends with a conclusion in Section 7. 
 
 
 



50

Scientific Paper________________________________________________________________
The Journal of Water Resources Management : Vol 1  Number 2  2013 

 3 

2 Study Area and Observation Data 
The Brue catchment in the United Kingdom was chosen as the study area, as shown in 
Figure 1. It is located in southwest England, 51.075 °N and 2.58 °W, and drains an area 
of 135.2 km2. It is a predominantly rural catchment of modest relief with spring-fed 
headwaters rising in the Mendip Hills and Salisbury Plain.  The observation data for this 
study were obtained from the Hydrological Radar Experiment (HYREX) project, which 
was funded by the Natural Environment Research Council (NERC). An automatic 
weather station (AWS) and automatic soil water station (ASWS), located in the 
catchment during the HYREX project,  provided records of net radiation, wind speed, 
wet and dry bulb temperatures, atmospheric pressure and rainfall at hourly intervals. 
The rain gauge network consists of 49 Casells 0.2 mm tipping bucket-type rain gauges. 
The observation data were downloaded from the British Atmospheric Data Centre 
(BADC). The ground observed data from the Brue catchment, also provided by HYREX, 
were used for evaluating the downscaled weather variables produced by the mesoscale 
regional model MM5.  The hybrid prediction system presented in this paper has been 
applied to data sets from 1995, 1996 and 1998 with the four weather variables.  This 
paper discusses the results of the selected years based on four types of mathematical 
modelling for error correction of downscaled weather variables and verifies them with 
the observation data set from the Brue catchment. 
 
 

Figure 1. Study area of the Brue catchment, Somerset, Southwest England 
 
 
3  Mesoscale Modelling 5 
The approach adopted for this study uses the PSU–NCAR mesoscale model version 5 
(MM5) (Chen and Dudhia, 2001; Grell, 1995) as a common test framework to host the 
output of the weather variables for surface temperature, surface pressure, relative 
humidity, solar radiation and rainfall.  The MM5-derived weather variables were 
extracted from four months of the year for 1995, 1996 and 1998.  The model was 
simulated for the four seasons with representative months of the seasons [viz. winter 
(January), spring (April), summer (July) and autumn (October) seasons].  This study 
used ERA-40 reanalysis weather data, which is provided by the European Centre for 
Medium-Range Weather Forecasts (ECMWF) through its data website. The resolutions 
of the data are 1° x 1° in space and 6 hours in time. The model was run with horizontal 
resolutions of four domains called Domain 1, 2, 3 and 4.  Domains 1 to 4 have been 
structured with horizontal resolutions of 21 x 27km, 19 x 9km, 19 x 3km, 19 x 1km, 
respectively (see Figure 2).  The model was run using a vertical level of 23, a default 
level for MM5.  The set of parameters selected for the atmospheric model was the Grell 
cumulus formation based on a previous case study (Ishak et al., 2011) within the Brue 
catchment. The MRF (what is MRF?) parameters for the planetary boundary layer has 
been chosen for(?) MM5 simulation.  Further details regarding these schemes may be 
found in the seminal study by Chen and Dudhia, 2001).  The pattern of global model 
output of the four weather variables from MM5 with respect to the observed ground 
data from the HYREX project for years 1995, 1996 and 1998 has been systematically 
discussed in a previous study by  Ishak et al., 2010.  The performances of the six MM5-
derived weather variables based on Domain 4 (inner domain) are shown in Table 1.  
The output of the MM5 model run is then taken as the input data for the statistical 
models, which are multiple linear regression, nonlinear regression, artificial neural 
network and support vector machine.  
 

Figure 2. MM5 domains in the Brue catchment size of Domain 1 to Domain 4 
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Table 1. MM5 Downscaling performance statistics for 1995, 1996 and 1998 in the 
Brue catchment 

 
 

4 Empirical Models for Error Correction 
4.1 Regression Models 
This study uses two regression models, namely, the multiple linear and nonlinear 
power-form function models, which are common mathematical methods to describe a 
relationship of output (Y) with input of variables (X1, X2, X3, X4, Xn) and model parameters 
(a0, a1, a2, …. an) (Thomas and Benson, 1969).  These methods are reliable and widely 
used in many estimation and forecasting problems.  The linear and power-form 
equations are given as in Eq. (1) and (2) below: 
 

onno aXaXaXaXaXaXaXaY  .......665544332211          (1) 

o
a
n

aaaaaa nXXXXXXXaY  .....654321
6543210       (2) 

where, ,10 ,..., naaa are the model parameters, 0  is the multiplicative error term, and 
n is the number of the data series.  In this study, Y is the observed value of each weather 
variable while X1 to X6 are input of variables from MM5 output such as wind speed, 
surface temperature, surface pressure, solar radiation, rainfall and relative humidity.   
 
Optimisation techniques are applied to minimise the result-estimated variable function, 
for instance, )(min xf

x
  (Broyden, 1970; Fletcher, 1970; Jones and Thornton, 2000; 

Shao, 1993).  One such technique is the Broyden-Fletcher-Goldfarb-Shanno (BFGS), a 
Quasi-Newton gradient-based algorithm that is commonly used to solve unconstrained 
minimisation cases.  Such cases occur when there are imposed conditions on the 
independent variables X, and it is assumed that f is defined for all Xs.  The BFGS uses an 
iteration process to find the optimal values for this function.  The value of a0 (initial 
value) is considered first, then the process is carried out for the rest of the values a1, a2, 
a3, a4, an.  Eventually the iteration process successfully estimates the variables at the 
local minimum.  The analysis ends when a predefined number of iterations, k, is reached. 
This optimisation technique is used throughout this study to determine the most 
optimal values of parameters for the function. 
                  
4.2 Artificial Neural Network 
 
This study employs an artificial neural network (ANN) with a single hidden layer 
architecture, as shown in Figure 3. The network topology in this study has six nodes in 
the first layer (layer A) and ten nodes in the second layer (layer B), which are called 
hidden layers.  The ‘trial and error’ method was adopted to identify the number of 
hidden nodes. In the third layer (layer C), which is called the output layer, there is one 
node.  The network has six network inputs and one network output. There is an extra 
input assumed in each node that is considered to have a constant value of one.  The 
weight that modifies this extra input is called the bias. The error correction was done by 
implementing a feed forward back propagation ANN with multiple-layer perceptron 
(MLP) architecture and was trained using the Levenberg–Marquardt (LM) optimisation 
technique. Before performing the training process, the weights and biases were 
initialized to appropriately scaled values. The sigmoid activation function was employed 
in this research.  It has been observed that a feed forward ANN with six hidden neurons 
and learning rate of 0.08 gives better training and testing results. 
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Figure 3. The structure of a singlelayer artificial neural network 
 
 
4.3 Support Vector Machines 
 
Although the support vector machine (SVM) is a relatively new machine learning 
approach compared to the ANN, its network architecture and parameterizations are well 
documented in literature. Thus, the mathematical formulations of this model will not be 
repeated in this paper. For implementation of the SVM modelling, the software LIBSVM 
was used in this project, which was developed by Chih-Chung Chang and Chih-Jen and 
supported by the National Science Council of Taiwan (Chang and Lin, 2001). Figure 4 
illustrates the SVM layout describing the processes carried out in this project. For this 
study, SVM modelling was carried out with different kernel functions and different SVR 
types (-SV regression and -SV regression).  The  value is set as 1 as suggested by 
previous studies on the Brue catchment (Remesan et al., 2009).  The cost of error 
assigns a penalty for the number of vectors falling between the two hyperplanes.  If the 
data quality is good, the distance between the two hyperplanes is narrowed down. If the 
data quality is noisy, it is preferable to have a smaller value of C, which will not penalise 
the vectors. However, in this study, the nu-SV regression for modelling was used as this 
kind of regressor with nonlinear kernel functions (radial basis function, RBF) performs 
better than the linear function as recommended and explored by Bray and Han, 2004 
and Han et al., 2007.  The error correction analysis was performed after fixing the 
parameters to default values (degree in kernel function is set as 3, coef0 in kernel 
function is set as zero, and the cache memory size is set as 40MB, tolerance of 
termination criterion is set as a default value of 0.001).  Identification of the cost 
parameter (C) and slack parameter () is very important for better performance of SVM. 
Different ranges of trial and error iterations were trained to find out the setting 
according to the least root mean square error (RMSE) values.  This resulted in the 
selection of the cost parameter of 0.6 - 0.8 and slack parameter of 0.002 – 0.005, which 
yielded the best results. 
 

Figure 4. The SVM-based hybrid modelling scheme used in this case study 
 

 
5 Selection of Model Inputs 
The four empirical models in this case study were developed to correct the downscaled 
weather variables obtained from MM5 (surface temperature, relative humidity, solar 
radiation, and rainfall). The target output of each model (MLR, NLR, ANN and SVM) was 
the observed ground value (HYREX weather data set) of weather variables in the Brue 
catchment.  In this section, the results obtained from the cross correlation and leave-
one-out cross-validation (LOOCV) identifying the best input combination for the 
corresponding model is described. 
 
5.1 Cross-Correlation Method 
The traditional approach to find dominant input series is the cross-correlation method.  
Table 2 shows the correlation coefficient of input data series for both training and 
testing target data sets of four downscaled weather variables taking ground data as a 
reference. It is to be noted that the training data sets comprising 5,904 data points are 
taken from years 1995 and 1996, while the testing data sets consisting of 2,032 data 
points are from the year 1998. From Table 2, it can be observed that MM5-derived 
surface temperature shows high correlation with a value of 0.955 during the training 
period and a value of 0.943 during the testing period.  The second highest correlation 
values are associated with MM5-derived relative humidity values for both training and 
testing periods showing values of -0.547 and -0.520 respectively.  MM5-derived wind 
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speed and rainfall have shown relatively weak correlation in the testing phase, while the 
same is observed for MM5-derived rainfall and pressure in the training phase.  If the 
testing results based on the correlation outputs are considered as a reference, a trend of 
dominant inputs can be observed: TmpMM5 >RhMM5 >SolarMM5 >PrsMM5 >RfMM5 
>WndMM5. Similarly, if the correlation statistics of other three attributes from the table 
are considered, the trends of the input variables will be as follows: RhMM5 >SolarMM5 
>WndMM5 >TmpMM5 >RfMM5 >PrsMM5 for relative humidity, SolarMM5 >RhMM5 
>TmpMM5 >WndMM5 >PrsMM5 >RfMM5 for solar radiation, and RfMM5 >PrsMM5 
>WndMM5 >RhMM5 >SolarMM5 >TmpMM5 for rainfall. 
 
 
Table 2. Correlation values between observed each weather variables and input of 
variables for 1995 to 1996 and 1998 
 
 
5.2. Leave-One-Out Cross-Validation method 
 
The leave-one-out cross-validation (LOOCV) method involves using a single data set 
from the available input space for modelling and identifying the best input for better 
training and testing results.  This modelling is then repeated with two inputs, keeping 
the best input fixed and varying other input series, and so on.  The performance of 
LOOCV is evaluated based on the value of RMSE in each model.  For this case study, this 
modelling approach was adopted for all four models.  The best model input structures 
obtained from LOOCV for all four weather variables are shown in Table 3. The 
corresponding graph pattern of the LOOCV results with the NLR, MLR, ANN and SVM 
models are illustrated in Figures 5 to 8 for surface temperature, relative humidity, solar 
radiation, and rainfall parameters respectively. For example, the graph pattern of 
surface temperature in Figure 5 describes the LOOCV-based model selection for NLR, 
MLR, ANN and SVM.  It shows the best combination of input variables after running the 
four models with forward selection, optimisation and LOOCV.  Various combinations 
based on the six input variables were tested for all models, where the objective was to 
find the best combination with least value of RMSE.  For instance, for the NLR model, 
surface temperature (T) performed best among the four variables with the lowest RMSE 
value.  Meanwhile, the lowest values of RMSE for two combinations of variables are 
surface temperature and wind speed (T+W); the three best combinations are surface 
temperature, wind speed and relative humidity (T+W+Rh); and so on.  Similar 
descriptions can be applied for MLR, ANN and SVM. 
 
 
Table 3. Model selection based on LOOCV method showing RMSE for NLR, MLR, 
ANN and SVM models 
 
Figure 5. Results showing the LOOCV method of surface temperature by using NLR, 
MLR, ANN and SVM models 
 
 
Considering all combinations, it can be seen from Figure 5 that for the NLR model the 
best combination of inputs were MM5-derived surface temperature, wind speed, relative 
humidity and solar radiation, yielding the least value of RMSE.  The corresponding RMSE 
values can be found in Table 3 for surface temperature under the NLR model.  For MLR 
models, the best input combination of selection is identified as MM5-derived surface 
temperature and surface pressure, while for ANN models, the best inputs are identified 
as a combination of MM5-derived surface temperature, wind speed, relative humidity, 
solar radiation, rainfall and surface pressure.  Similarly, for SVM models, a combination 
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of surface temperature, wind speed, relative humidity, solar radiation, rainfall and 
surface pressure (T+W+Rh+S+R+P) is best. The same can be said for the other three 
variables of relative humidity, solar radiation and catchment average rainfall in different 
modelling scenarios. The best parameter combinations representing optimal model are 
illustrated in Figures 6 to 8 for relative humidity, solar radiation and rainfall 
respectively. It is worth mentioning that in cases of conflict between training and testing 
observations, the combination considering the lowest RMSE values during the testing 
phase was identified. The RMSE values are listed in Table 3, which also highlights the 
best corresponding parameter combinations. 
 
Figure 6. Results showing the LOOCV method of relative humidity using NLR, MLR, 
ANN and SVM models 
 
Figure 7. Results showing the LOOCV method of solar radiation using NLR, MLR, 
ANN and SVM models 
 
Figure 8. Results showing the LOOCV method of rainfall using NLR, MLR, ANN and 
SVM models 
 
 
6 Application of Different Error Correction Methods  
This section describes the detailed results of the MM5-derived surface temperature, 
relative humidity, solar radiation and rainfall error correction modelling using the four 
methods (MLR, NLR, ANNs and SVMs) for the Brue catchment in southwest England. In 
this study, the downscaled MM5 and error-corrected values of weather variables is 
compared with the HYREX land-based observed data.  The study has focused on two 
major indices as the performance criteria: RMSE and mean bias error (MBE). The RMSE 
and MBE values are mainly expressed as percentages of the mean value of observed 
data. 
 
6.1 Modelling with MLR and NLR Models  
Before implementing MLR and NLR models, it is important to standardise the input data 
with the target output for Xmax, Xmean or Xmin.  For solar radiation and rainfall, normalised 
data was used for analysing MLR and NLR models.  This is because negative values were 
too large in the solar radiation data, and there were many zero values in the rainfall 
data. After standardising temperature and relative humidity and normalising solar 
radiation and rainfall, MLR and NLR equations were then modelled according to Eq. (1) 
and Eq. (2) respectively. Generalisation of the four variables is made based on 
performance on the testing data set. 
 
Surface temperature 
In the case of error correction modelling for surface temperature, the NLR model gave 
better results for the combination of TmpMM5, WndMM5, RhMM5 and SolarMM5 with 
RMSE values of 1.902 m/s and 1.952 m/s (based on Table 3) during training and testing 
phase respectively. The optimum NLR model is given in Eq. (12). 

   
067.0

030.0129.0 5
100

510/555)583.05(575.0 





 

SolarMMxRhMMxWndMMxTmpMMxY  ……..(12) 

 
In MLR function models, the TmpMM5 and PrsMM5 input combination have shown 
better performance with RMSE values of 1.616 m/s and 1.925 m/s during training and 
testing periods respectively.  The optimal MLR model with two input variables and 
corresponding parameters is shown in the Eq 13.  
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229.1
100

5Pr)856.0)15((733.11 xsMMxTmpMMY 





             …….(13) 

 
The values of RMSE and bias obtained after surface temperature corrections based on 
MLR and NLR during the training and testing phases can be found in Table 4.  For better 
visual understanding of the model accuracy, scatter plots of the surface temperature 
training set before and after error correction with MLR model are depicted against 
observed data in Figure 9. The corresponding scatter plots of the testing data set are 
given in Figure 10. Similarly, scatter plots showing the difference between measured 
and NLR model error corrected surface temperature during both training and testing 
phase are shown in Figure 11. Before error correction, the MM5-derived surface 
temperature showed higher values of bias and RMSE in comparison with observed 
surface temperature for both training and testing sets. During the training period (1995-
1996), the MM5-simulated surface temperature showed a bias value of 0.443oC 
(4.510%) and corresponding RMSE values of 3.055oC (31.074%) (see Table 1).  MM5 
simulation results during the testing period (1998) have shown higher bias and RMSE 
values of -0.310oC (-3.154%) and 2.811oC (28.588%) respectively.  After error 
correction modelling, the NLR model performed better with less value of bias compared 
to the MLR model (refer to Table 4).  The values of bias from NLR output reduced 
considerably to 0.261% during the training period and -2.492% (slightly 
underestimated) during the testing period.  Likewise, the corresponding RMSE values 
also reduced to 16.186% and 19.722% during training and testing periods respectively. 
 

 
Table 4. Statistical indices showing performance of surface temperature error 
correction models during the training and testing phases 

 
Figure 9. Scatter plots of four weather variables error correction on training data 
set: MM5-derived output (left) after MLR modelling output (right) 

 
Figure 10. Scatter plots of four weather variables error correction modelling on 
testing data set: MM5-derived output (left) after MLR modelling output (right) 
 
Figure 11. Scatter plots of NLR modelling for four weather variables error 
correction modelling during training phase (left) and testing phase (right) 
 
MLR and NLR modelling output results for the other three variables, relative humidity, 
solar radiation and catchment average rainfall are shown in Figures 9 to 11. The results 
are based on the best combinations of variables, as depicted in Figures 6 to 8 and Table 
2. From the statistics of these three variables shown in Tables 5 to 7, it can be seen how 
such modelling approaches reduce the error from the raw MM5 downscaled 
performance. It is to be noted that the data inputs of the rainfall analysis improvement 
with mathematical models are based on normalised data.  However, the values of RMSE 
and MBE were de-normalised for MLR and NLR.  The reason for de-normalisation of this 
output was for comparative results. The established equations of MLR and NLR for other 
three corrected weather variables are as follows: 
 
Relative humidity 
 
NLR 

          
740.0

035.0076.0111.0664.0

10
5Pr50352010525655999.139


 








sMMxxTmpMMxxRfMMxxWndMMxRhMMxY  

……..(14) 



56

Scientific Paper________________________________________________________________
The Journal of Water Resources Management : Vol 1  Number 2  2013 

 9 

 
MLR 

         

    









































654.0
10

5Pr146.02565

002.010
10

5193.020105056.05035721.05341.87

xsMMxxWndMM

xSolaMMxxRfMMxxTmpMMxRhMMY

…….(15) 
 
Solar radiation 
 
NLR 

   826.0500071.05  RfMMxSolarMMY       ……..(16) 
 
MLR  

       
   013.05Pr011.05

022.05217.05023.05638.05000106.0
xsMMxWndMM

xTmpMMxRhMMxRfMMxSolarMMY


  ….(17) 

 
Catchment average rainfall  
 
NLR 

           217.15639.05051.05Pr596.05557.05179.05  TmpMMxSolarMMxsMMxRhMMxWndMMxRfMMY  
……..(18) 
 
MLR 

         
 .004.05

017.05020.05021.05044.05Pr261.0500003.0
xSolarMM

xTmpMMxWndMMxRhMMxsMMxRfMMY




…….(19) 
 
6.2 Modelling with the ANN Model 
As with the previous two models, the ANN model uses data from years 1995 and 1996 
for training and year 1998 data for testing.  Scatter plots of the results from the LM 
(what is LM?) algorithm-based ANN model during training and testing are given in 
Figure 12. The corresponding training and testing statistics for surface temperature, 
relative humidity, solar radiation and rainfall are shown in Tables 4 to 7. 
 
Surface temperature (oC) (Is there a reason for putting units of measurement in the 
subtitles?) 
For surface temperature, the best combination was achieved with six inputs: TmpMM5, 
WndMM5, RhMM5, SolarMM5, RfMM5 and PrsMM5 (see Table 4).  The inputs are MM5-
derived surface temperature, wind speed, relative humidity, solar radiation, rainfall and 
pressure, which have been used for error correction based on LOOCV. The ANN model 
anticipated a surface temperature with RMSE values of 1.571 oC (15.869%) during the 
training phase and 1.802 oC (18.207%) during the testing phase.  The bias value 
observed during the training phase is -0.003 oC (-0.032%), whereas the mean bias error 
(MBE) during the testing phase is observed as 0.371 oC, which is 3.751% of the mean 
observed value.  From Table 1, it can be observed that the bias value was initially 
4.510% for the MM5 simulation results during the training phase. The ANN modelling 
has significantly reduced this bias value to -0.032% during training and to 3.751% 
during the testing phase. Although the ANN produced better training results than those 
of the regression models, it was less effective in showing better skills in terms of 
numerical values compared to MLR and NLR function models during testing.  All the four 
models (MLR, NLR, ANN and SVM) were trained and tested using the same data set. 
Thus, the reason of the disparity could be associated with inputs used for the models. 
 



 57

Scientific Paper________________________________________________________________
The Journal of Water Resources Management : Vol. 1  Number 2  2013 

 10 

 
Figure 12. Scatter plots of ANN model results for four weather variables error 
correction modelling during training (left) and testing (right) 
 
 
Relative humidity (%) 
It can be observed from Table 5 that ANN model performed better than all other models 
in the training phase.  The best combination of five inputs are RhMM5, WndMM5, 
PrsMM5, TmpMM5 and RfMM5. As shown in Table 1, the bias value of the MM5 
simulation results is 4.326% when compared against the MBE of the mean observed 
relative humidity. The bias is significantly diminished through ANN modelling.  The bias 
value observed in the ANN model during the training phase is close to zero, while the 
MBE during the testing phase is -0.824%, which is -0.984% of mean observed value. 
 
 
Table 5. Statistical indices showing performance of relative humidity error 
correction models in the training and testing phases 

 
 

Solar radiation (W/m2) 
Solar radiation shows a different trend from the other three variables. As indicated 
earlier, the best performing models during the training and testing periods are ANN and 
MLR respectively. Solar radiation behaves differently due to the large amount of 
negative values in the solar radiation data set, and therefore, only MLR can analyse these 
negative data set, especially during evening and night time. The statistical performance 
of error-corrected solar radiation is shown in Table 6 and Figure 12. Table 1 shows the 
value of bias from MM5-derived solar radiation, which is 4.040 W/m2 (3.749%) for the 
training phase and -0.289 W/m2 (-0.268%) for the testing phase. In contrast, the value of 
bias using the ANN model during the training phase is reduced to -0.006 W/m2 (-
0.005%), while MBE during the testing phase is observed as 30.983 W/m2, which is 
28.577% of mean observed value. (Add a phrase describing the RMSE), the value of 
RMSE from the ANN model is 72.960 W/m2 (67.248%) during the training phase and 
110.470 W/m2 (101.822%) during the testing phase. 

 
 

Table 6. Statistical indices showing performance of solar radiation error 
correction models in training and testing phases 
 
 
Catchment average rainfall (unit of measurement?) 
Results indicate that among all modelling cases, ANN constructed better models for 
catchment average rainfall as compared to MLR, NLR and SVM models in the training 
phase (see Table 7). In the ANN model, it was found that three input variables provided 
the most optimal combination of this model, and these are RfMM5, PrsMM5 and RhMM5. 
Improvements through this method can be observed in the series of tables 1 through 7 
representing the statistics before and after error correction modelling with the ANN 
model. Although this is not the best method for catchment average rainfall improvement 
from downscaled MM5 as the errors are still very high, there is some reduction of errors, 
with approximately 20% in the training period while 10% in the testing period. 
 
 
Table 7. Statistical indices showing performance of rainfall error correction 
models in the training and testing phases 
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6.3 Modelling with SVMs  
SVMs use the LOOCV method for input modelling.  The statistical performance of the 
SVM with nu-SVR and RBF kernel is presented in the series of tables 4 through 7 for 
surface temperature, relative humidity, solar radiation and rainfall error correction 
modelling in the training and testing phases. Scatter plots show the observed and error-
corrected data of the four weather parameters (see Figure 13).  
 
Surface temperature (oC) 
SVM showed satisfactory results for surface temperature.  Results for error correction 
achieved higher accuracy compared to those of the other models during the testing 
period (Table 4). Similarly, the SVM was found to be the second best followed by the 
ANN model in the training period.  The values of MBE and RMSE are 0.239% and 
16.136% respectively during the training phase, while -1.172% and 17.5% during the 
testing phase. 

 
 

Figure 13. Scatter plots of SVM model results for four weather variables of error 
correction modelling during training (left) and testing (right)   
 

 
Relative humidity (%) 
The evaluation of relative humidity error correction modelling using SVM is given in 
Table 5.  The improvements for this parameter from MM5 downscaling shows similar 
output patterns as those of the other weather variables. In terms of performance, the 
SVM constructed better models as compared to the MLR, NLR and ANN in the testing 
phase.  The best model results are obtained with five input combinations, which are 
RhMM5, WndMM5, PrsMM5, TmpMM5 and RfMM5. Improvements of the modelled 
relative humidity can be seen in Figure 13. There is significant improvement in error 
reduction from MM5 downscaling data, as shown in Table 1 and Table 5. The value of 
bias for relative humidity from MM5 simulation results is -3.622 % (4.326%) during 
training phase (see Table 1). In comparison, the value of bias in the SVM model for the 
same phase is 0.009% (0.010%), while the value of bias during testing phase is -0.119%, 
which is -0.142% of mean observed value. In this regard, the SVM model shows least 
value of RMSE of 7.427% (8.870%) during the training phase and 8.373% (10.0%) 
during the testing phase.  
 
Solar radiation (W/m2) 
Statistical error results of solar radiation output, illustrated in Table 6, shows that error 
correction from the ANN model performed better than all other models in the training 
phase. Conversely, SVM performed better than ANN and NLR models in the testing 
phase.  The SVM output shows that the three inputs that gave the best combinations are 
SolarMM5, RhMM5 and TmpMM5.  A scatter plot of observed and corrected solar 
radiation for the training and testing data is depicted in Figure 13.  Compared against 
the mean observed solar radiation, the MM5 simulation results gave a biased value of 
4.040 W/m2 (3.749%) in the training phase (see Table 1).  The bias value observed in 
the SVM model during the training phase is -4.489 W/m2 (-4.138%), while the MBE 
during the testing phase is 1.126 W/m2, which is 1.037% of mean observed value. The 
SVM model analysed the solar radiation with RMSE values of 83.24 W/m2 (76.725%) 
during the training phase and 96.877 W/m2 (89.293%) during the testing phase. 
Similarly with the result of catchment average rainfall where even this four 
mathematical model did not performed quite well but at least the value of RMSE 
performed improvement ranging from 30 during training and 20% during testing. 
(Why is catchment average rainfall being discussed here?) 
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Catchment average rainfall (mm) 
Table 7 clearly shows that the SVM model gave the second lowest value of bias during 
testing phase than the ANN and NLR models.  However, in the training phase, SVM 
model showed better bias and RMSE than the NLR model, but weaker than ANN and 
MLR.  The SVM model produced better modelling results with RMSE value of 0.352 mm 
(392.139%) and MBE value of -0.035 mm (-39.563%) during the testing phase. The 
corresponding value during the training phase are 0.279 mm (311.022%) and -0.022 
mm (-24.584%) respectively.  The performance of SVM in terms of MBE and RMSE 
values was weaker than that of ANN model during the training and testing periods.  In 
general, all the values of RMSE for both training and testing phases shows variation as 
290% < RMSE < 400%. This implies that the four models of error correction performed 
unsatisfactorily in producing better simulation of the MM5-derived rainfall. 
 
7 Conclusion 
 
Although hydrological modelling has been extensively studied, there has been little 
study on some hydro-meteorological data, specifically variables such as wind speed, 
surface temperature, surface pressure, relative humidity, solar radiation and rainfall.  
These data nonetheless are very important for flood forecasting and water resources 
assessment, especially in ungauged catchments.  One of the reasons for such little study 
is due to a general lack of hydro-meterological data, and although this is a common 
problem for hydrological and meteorological modellers worldwide, it is particularly so 
in developing countries.  However, with the advancement of computer and 
telecommunication technology, it is now possible to collect huge quantities of data.  The 
optimisation and LOOCV presented in this case study may offer a solution for 
hydrologists and meteorologist to estimate any hydro-meteorological variables in the 
future. Using a MM5 framework to downscale key parameters, bias from the initial data 
selection is further reduced through error correction models. 
 
In this study, it has been demonstrated that statistical performance produces better 
result after correction on MM5-derived surface temperature, relative humidity, solar 
radiation and rainfall using four types of models including the two, three, four, five and 
six input variables of forward selection.  Although cross-validation involves forward and 
backward selection, in this case study we have focused on forward selection due to little 
input variables for the error correction methodology.  The result shows that cross-
validation is useful for multiple linear, nonlinear, ANN and SVM structures systems as 
decreases in value of bias and RMSE become evident for the corrected four weather 
variables. It was also found that cross-validation (k-1) will need more time to process 
huge data sets, for instance data sets that have above 5,000 data points.  Cross-
validation with optimisation technique has the potential in helping hydrologists and 
meteorologists to decide the optimum input data combination for their models.  
 
(NEED TO ASK DR. ASNO) Results from the case study showed varying performance 
levels among the parameters after error correction.  The parameter showing the least 
significant improvement was rainfall.  MM5-derived rainfall performance improved 
about 30% in terms of RMSE value.  Although the most challenging work in this research 
was improving estimation of rainfall, ANN modelling showed a decrease in RMSE value 
(before correction is 375.4% while after correction is 345.691% during the training 
period).  The second least-performing parameter is MM5-derived solar radiation where 
the values of RMSE before and after correction are 103.580% and 89.293% respectively 
during the training period.  The RMSE value is based on SVM modelling output.  The next 
parameter, MM5-derived surface temperature, saw a decrease of RMSE value from 
12.470% to 10.0%, before and after correction respectively, according to SVM modelling 
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output. The most efficient error correction modelling in this case study is MM5-derived 
surface temperature??.  The modelled surface temperature saw a decrease of RMSE 
values from 28.588% to 17.5%.  This variable, which derived from MM5, performed with 
more than 50% improvement by decreasing the value of RMSE.  
 
In summary, this case study demonstrates the improvement of MM5-derived weather 
parameters using six inputs, which is a novel approach that considers more input 
variables for error correction modelling instead of only one. Clearly, this marks the 
beginning of error correction through mathematical modelling, and there is the need for 
more study for further data quality improvement.  This case study has not provided a 
final answer to error correction techniques for hydrological and meteorological 
modelling, but instead provides an impetus for the academic and practitioner 
communities to expand on this problem and explore the mathematical tools presented 
in this paper such that wide gaps of knowledge could be bridged by engaging in a wide 
range of trials using this approach. 
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